

Stevens Institute of Technology & Systems Engineering Research Center (SERC)

Systems Engineering Transformation through Model Centric Engineering Presented by: Dr. Mark R. Blackburn (PI)

With Contributing Sponsors (NAVAIR, ARDEC, DASD(SE)) With Contributing Researchers (RT-48, 118, 141, 157, 168, 170, 176) November 8, 2017

Certain commercial software products are identified in this material. These products were used only for demonstration purposes. This use does not imply approval or endorsement by Stevens, SERC, NAVAIR, or ARDEC nor does it imply these products are necessarily the best available for the purpose. Other product names, company names, images, or names of platforms referenced herein may be trademarks or registered trademarks of their respective companies, and they are used for identification purposes only.

- Historical perspective and resources
- Perspectives and status RT-170 NAVAIR
 - -Systems Engineering Transformation (SET) Framework for a new operational paradigm between government and industry
 - -Surrogate pilot experiment(s) for Executing the SET Framework that provides an experimentation environment for our research
- Perspectives and status RT-168 ARDEC
 - —Sponsor's vision for integrated Model-Based Engineering (iMBE) environment
 - -Research uses cases and a few examples of deliverables and demonstrations

Resources

Principal Invest

- Technical reports link: http://www.sercuarc.org/researcher-profile/mark-blackburn/
- Comprehensive briefing: http://www.sercuarc.org/publications-papers/presentationsystems-engineering-transformation-through-model-centric-engineering-past-why-presentwhat-and-future-how/

NAVAIR: RT-141 Phase I Summary

NAVAIR: RT-157 **Phase II – SET Initiated**

ARDEC: RT-168 Synergistic

SYSTEMS ENGINEERING Research Canter Transforming System Engineering through Model-Centric Engineering Technical Report SERC-2015-TR-044-3 January 31, 2015	SYSTEMS ENGINEERING Research Center Transforming System Engineering through Model-Centric Engineering Technical Report SERC-2015-TR-044-3 January 31, 2015	Conser No. HOUSE 130-0004 SYSTEMS ENGINEERING RESEARCH CENTER Transforming Systems Engineering through Model-Centric Engineering A013 Final Technical Report SERC-2017-TR-110 Update: August 8, 2017
estigator: Dr. Mark Blackburn, Stevens Institute of Technology Research Team: titute of Technology: Dr. Rob Cloutier, Eirik Hole, Mary Bone Wayne State University: Dr. Gary Witus Sponsor: NAVAIR, DASD (SE)	Principal Investigator: Dr. Mark Blackburn, Stevens Institute of Technology Research Team: Stevens Institute of Technology: Dr. Rob Cloutier, Eirik Hole, Mary Bone Wayne State University: Dr. Gary Witus Sponsor: NAVAIR, DASD (SE)	Principal Investigator: Mark Blackburn, Stevens Institute of Technology Co-Principal Investigator: Dinesh Verma, Stevens Institute of Technology Research Team Georgetown University: Robin Dillon-Merrill Stevens Institute of Technology: Roger Blake, Mary Bone, Brian Chell, Andrew Dawson, John Dzielski, Rick Dove, Paul Grogan, Steven Hoffenson, Eirik Hole, Roger Jones, Jeff McDonald, Kishore Pochiraju, Chris Snyder, Lu Xiao University of Southern California: Todd Richmond, and Edgar Evangelista
HQ0554-13-0-0054 No. 1280-0015-044-0 Teak Gene SD18, 87 118	Centred Number: H0853413-04064 Report No. 5210-0010-044-3 Test Order 0010, 81118	Sponsor: U.S. Army Armament Research, Development and Engineering Center (ARDEC), Office of the Deputy Assistant Secretary of Defense for Systems Engineering (ODASD(SE))

Research Tasks and Collaborator Network

RT-48

Mark Blackburn (PI), Stevens Rob Cloutier (Co-PI) - Stevens Eirik Hole - Stevens Gary Witus – Wayne State RT-118 Mark Blackburn (PI), Stevens **Rob Cloutier - Stevens** Eirik Hole - Stevens Gary Witus – Wayne State RT-141 Mark Blackburn (PI), Stevens Mary Bone - Stevens Gary Witus – Wayne State RT-157 Mark Blackburn (PI), Stevens Mary Bone - Stevens **Roger Blake - Stevens** Mark Austin – Univ. Maryland Leonard Petnga – Univ. of Maryland RT-170 Mark Blackburn (PI), Stevens Mary Bone - Stevens Deva Henry - Stevens Paul Grogan - Stevens Steven Hoffenson - Stevens Mark Austin - Univ. of Maryland Leonard Petnga – Univ. of Maryland Maria Coelho (Grad) – Univ. of Maryland Russell Peak – Georgia Tech. Stephen Edwards – Georgia Tech. Adam Baker (Grad) – Georgia Tech. Marlin Ballard (Grad) – Georgia Tech.

RT-168 – Phase I & II Mark Blackburn (PI), Stevens Dinesh Verma (Co-PI) – Stevens Ralph Giffin **Roger Blake - Stevens** Mary Bone – Stevens Andrew Dawson – Stevens (Phase I) **Rick Dove** John Dzielski, Stevens Paul Grogan - Stevens Deva Henry – Stevens (Phase I) **Bob Hathaway - Stevens** Steven Hoffenson - Stevens Eirik Hole - Stevens Roger Jones – Stevens **Benjamine Kruse - Stevens** Jeff McDonald – Stevens (Phase I) Kishore Pochiraju – Stevens Chris Snyder - Stevens Gregg Vesonder – Stevens (Phase I) Lu Xiao – Stevens (Phase I) Brian Chell (Grad) – Stevens Luigi Ballarinni (Grad) – Stevens Harsh Kevadia (Grad) – Stevens Kunal Batra (Grad) – Stevens Khushali Dave (Grad) – Stevens Rob Cloutier – Visiting Professor Robin Dillon-Merrill – Georgetown Univ. Ian Grosse – Univ. of Massachucetts Tom Hagedorn – Univ. of Massachusetts Todd Richmond – Univ. of Southern California (Phase I) Edgar Evangelista – Univ. of Southern California (Phase I) SERC 168/170.

RT-176

Kristin Giammaro (PI) – NPS Ron Carlson (Co-PI), NPS Mark Blackburn (Co-PI), Stevens Mikhail Auguston, NPS Rama Gehris, NPS Marianna Jones, NPS Chris Wolfgeher, NPS Gary Parker, NPS

- Over 30 organizational discussions "<u>tell us about most advanced</u> and holistic approach...":
 - —Model-Based Engineering (MBE), Integrated Model-Centric Engineering, Interactive Model-Centric Systems Engineering (IMCSE), Model-Driven Development, Model-Driven Engineering (MDE), and even Model-Based Enterprise, which brings in more focus on manufacturability
- MCE characterizes the goal of integrating different model types with simulations, surrogates, systems and components at different levels of abstraction and fidelity across discipline throughout the lifecycle with manufacturability constraints
- SERC Research Supports Digital Engineering (DE) Thrust by DoD:
 —An integrated digital approach that uses <u>authoritative sources</u> of systems' data and models as a continuum across disciplines to support lifecycle activities from concept through disposal

Phase II: Systems Engineering Transformation Initiated at NAVAIR

- Organizations (with a few exceptions) were unwilling to share quantitative data, however
- Qualitative data in the aggregate suggests that <u>MCE technologies</u> and methods are advancing and adoption is accelerating

NAVAIR Executive Leadership Response:

- NAVAIR must move quickly to keep pace with other organizations that have adopted MCE
- NAVAIR must transform in order to perform effective oversight of primes that are using modern modeling methods for system development

March 2016: Change of Command has Accelerated the <u>Systems Engineering Transformation</u> and Broadened the Scope

Current Research Trusts Investigated in Evolving Pilots

Semantic Web Technologies

Multidisciplinary Design, Analysis and Optimization MDAO

Enforces Modeling Methods

Underlying technologies for reasoning about completeness and consistency <u>Across</u> <u>Domains</u> in modeling tool agnostic way

> Digital System Model: Single Source of Truth (*authoritative source of truth)*

Provides optimization analysis <u>Across Domains</u>

to support KPP and alternatives trades at mission, system, & subsystem levels

Modeling Methodologies

Guides proper usage to ensure <u>Model Integrity</u> (trust in model results) for decision making

Integrated Modeling Environment

Surrogate Pilot focus is on <u>Execution</u> of SET Framework

NAVAIR Public Release 2017-892. Distribution Statement A - "Approver 64 perfect perfect perfect ase; distribution is unlimited"

Surrogate Pilot Overview

- <u>Mission</u>: Collaboration between Government and Industry in Model-based Acquisition under SET Framework
- <u>Goal:</u> Execute SET Framework to Assess, Refine, and Understand a New Paradigm for Collaboration in Authoritative Source of Truth (AST)
- <u>Objectives</u> (non exhaustive):
 - Formalize experiment to answer questions about executing SET framework using Surrogate Contractor (SC)
 - "Government team" creates mission, system (& other) models, "generates specification/RFP," & provides acquisition models to SC as Government Furnished Information (GFI)
 - SC refines GFI reflects corrections/innovations with physical allocation views with multi-physics-based Initial Balanced Design
 - Simulate continuous virtual reviews and derive new objective measures for assessing maturing design in AST
 - Demonstrate visualizations for real-time collaboration in AST
 - Demonstrate and document methods applied
 - Investigate challenging areas and research topics in series of pilots

Formalizing the Use of Models... Creating a Digital Thread...

 $NAVAIR\ Public\ Release\ 2017-892.\ Distribution\ Statement\ A-``Approved\ for\ public\ release;\ distribution\ is\ unlimited``$

Example of Surrogate Questions (not exhaustive)

- Learning about new operational paradigm between government and industry in the <u>Execution</u> the SET Framework (NOT an air vehicle design)
- We are concerned with interactions (non-exhaustive):
 - Simulating prior to contract award (now)

SYSTEMS ENGINEERING

Research Center

- Formalization of a "specification" for "Request for Proposal (RFP)" and methods for providing models to contractor
- Simulating "Execution" of Oversight / Insight in AST per SET Framework for real-time collaboration in heterogeneous environments
- Simulating feedback back to mission engineering caused by specified objectives for unachievable Key Performance Parameters (KPP)
- Simulating approach for "faults in specification/model" detected after contract award
- Simulating source selection desirably as a dynamic simulations and V&V
- Working with contracts/legal to get agreement on what a "specification" would be
- Methods for modularizing model used to "generate specification"
- Objective measures for evaluating evolving design maturity, with the reduction of risk
- How will we use the Systems Engineering Technical Review (SETR) guide and checklist that NAVAIR uses? And, how will we make recommendations for its evolution
- Use of Multidisciplinary Design, Analysis and Optimization (MDAO) at mission, systems, and subsystems (by surrogate contractor)

Formalize and Refine SET Framework

Methods for Partitioning of Work and Modularization of Models

Using OpenMBEE Model Development Kit/DocGen for Generating Specification from Modularized Model

http://www.openmbee.org

*An Integrated Model Centric Engineering (IMCE) Reference Architecture for a Model Based Engineering Environment (MBEE), NASA/JPL, Sept, 2019, RC 168/170.

Where Are We: Increment 1 and Elements 1 & 2

Our Research Efforts are Synergistic With Our ARDEC Sponsor and Other Collaborators

Perspectives on Characterizing Challenges of Research Space

Reasoning about completeness and consistency of information across domains

- Performance attributes of a system considered critical to the development of an effective military capability.
- Example:
 - -Predator shall have an endurance of 40 hours
 - -Possibly with other constraint:
 - And carry 340kg of multiple payloads including video cameras, laser designators, communications
 - -Meet some availability and cost objectives

Example: Cross Domain Relationships Needed for System Trades, Analysis and Design

- Scenario Refueling UAV
- Valve Cross-domain <u>Object</u>
- Mechanical <u>Domain</u>
 - -Valve connects to Pipe
- Electrical <u>Domain</u>
 - -Switch opens/closes Value
 - -Maybe software

- Operator <u>Domain</u>
 - Pilot remotely send message to control value
- Communication <u>Domain</u>
 - —Message sent through network
- Fire control <u>Domain</u>
 - Independent detection to shut off valve
- Safety <u>Domain</u>

RT-168 Use Case Perspective and Team

Decision Framework – Value Scatterplot of

Trades with Assessing Impact of Uncertainty*

*Cilli, M. Seeking Improved Defense Product Development Success Rates Through Innovations to Trade-Off Analysis Methods, Dissertation, Stevens Institute of Technology, Nov. 2015.

Decision Support Model Construct

Cilli, M. Seeking Improved Defense Product Development Success Rates Through Innovations to Trade-Off Analysis Methods, Dissertation, Stevens Institute of Technology, Nov. 2015.

Using MDAO for Assessment Flow Diagram of Decision Framework (AAMODAT)

- Can MDAO represent Assessment Flow Diagram?
- Does AFD characterize needed MDAO workflows?

Understanding Analysis Workflows and Methods for any Configured Workflows

Notional Example

Prodas \rightarrow CFD Muzzle Analysis

		Flow to the RIGHT>		->	->		Flow to the RIGHT>
TOOLS	Prodas	CASRED	CFD Muzzle Analysis	Terminal/ Systems Effects	IWARS	System/ Operational Effects	External Ballistics Effects
Prodas	Prodas		×	x		x	
CASRED		CASRED	+		х		
CFD Muzzle Analysis		1	CFD Muzzle Analysis			x	
Terminal/ Systems Effects		×		Terminal/ Systems Effects			x
IWARS			x		IWARS		
System/ Operational Effects		×				System/ Operational Effects	
External Ballistics Effects			x	x	x		External Ballistics Effects
	Flow to the < LEFT		<	<		Flow to the < LEFT	

CASRED ← Terminal/Systems Effects

Methodologies are Critical Because Commercial Tools are Method Agnostic

Cross-domain methodologies ensure tool usage produces complete and consistent information compliant with

28

IoIF Uses SWT for Interoperability Among "Any" Type of MCE Capability

IoIF: Integration and Interoperability Framework SWT: Semantic Web Technology

SYSTEMS ENGINEERING Research Center

Planned CONCEPT for Integrating Technologies into

OpenMBEE through IolF

*An Integrated Model Centric Engineering (IMCE) Reference Architecture for a Model Based Engineering Environment (MBEE), NASA/JPL, Sept, 201% RC 168/170.

Explore Integration of Graphical CONOPS Simulation with MDAO tools

Fully interactive simulation of a blue UAS on a mission to located a treasure with an intelligent (AI) red UAS counterparty disrupting mission

MDAO Methods

- Design of Experiments (DOE)
- Sensitivity Analysis
- Optimize desired objectives

Re-designed to run 1000 scenarios (instead of 10) driven by MDAO to fully cover DOEs

- SERC Collaborator: Georgia Tech, Georgetown, Naval Postgraduate School, Univ. of Maryland, Univ. of Massachusetts, Univ. of Southern Cal., Wayne State
- Digital Engineering Working Group
- Airspace Industry Association: CONOPS for Industry/Government Collaborative Framework
- Semantic Technologies for Systems Engineering Foundation
- NDIA Working Group Using Digital Engineering for Competitive Down Select
- NASA/JPL
- OpenMBEE Collaborator Group

—<u>https://groups.google.com/d/forum/openmbee/</u>

Thank You

- For more information contact:
 - —Mark R. Blackburn, Ph.D.
 - -Mark.Blackburn@stevens.edu
 - -Stevens Institute of Technology
 - —Links to technical reports: <u>http://www.sercuarc.org/researcher-profile/mark-blackburn/</u>
 - —Overview briefing of both projects from SERC Sponsor Review 2016: <u>http://www.sercuarc.org/wp-content/uploads/2014/05/05B_SSRR-2016_RT157_Blackburn_v2.pdf</u>
 - —Historical perspective with a long briefing: <u>http://www.sercuarc.org/publications-papers/presentation-systems-</u> <u>engineering-transformation-through-model-centric-engineering-past-why-</u> <u>present-what-and-future-how/</u>

Acronyms

CDD	Capability Description Document	MCSE	Model-Ce
CONOPS	S Concept of Operations	MDAO	Multidisc
CDR	Critical Design Review		Optimiza
CDRL	Contract Data Requirements List	MDE	Model-D
CFD	Computational Fluid Dynamics	NAVAIR	Naval Air
DARPA	Defense Advanced Research Project Agency	OV P&FQ	Operatio Performa
DASD	Deputy Assistant Secretary of Defense	PDR	Prelimina
DoD	Department of Defense	PLM	Product
DoE	Design of Experiments	RT	Research
FEA	Finite Element Analysis	SLOC	Software
HPC	High Performance Computing	SE	Systems
IMCE	Integrated Model-Centric Engineering	SET	Systems
IMCSE	Interactive Model-centric Systems Engineering	SERC	System E
IoT	Internet of Things	SER	System F
JCIDS	Joint Capabilities Integration and	SRR	System F
	Development System	SoS	System c
KPP	Key Performance Parameter	SOW	Stateme
MBSE	Model-based System Engineering	SSTT	Single So
MBE	Model-Based Engineering	SV	System V
MCE	Model-Centric Engineering	UAV	Unmann
		NON	N

MCSE	Model-Centric System Engineering
MDAO	Multidisciplinary Design Analysis and
	Optimization
MDE	Model-Driven Engineering
NAVAIR	Naval Air Systems Command
OV	Operational View
P&FQ	Performance and Flight Quality
PDR	Preliminary Design Review
PLM	Product Lifecycle Management
RT	Research Task
SLOC	Software Lines Of Code
SE	Systems Engineering
SET	Systems Engineering Transformation
SERC	System Engineering Research Center
SETR	Systems Engineering Technical Review
SFR	System Functional Review
SRR	System Requirements Review
SoS	System of Systems
SOW	Statement of Work
SSTT	Single Source of Technical Truth
SV	System View
UAV	Unmanned Air Vehicle
V&V	Verification and Validation